Program Outcome Assessment Matrix (Updated May 2009)

Assessment Tool Mapping

Assessment Tool	Α	В	С	D	Е	F	G	Н	I	J	K	Assessed/Reviewed by:
Student Examples	Р	Р	Р		Р	Р	Р	Р	Р	Р	Р	Faculty & DAC/Faculty
FE Exam	Р					S			S			Faculty & DAC
Senior Exit Survey	S	S	S	S	S	S	S	S	S	S	S	Student/Faculty & DAC
Alumni Survey	S	S	S	S	S	S	S	S	S	S	S	Alumni/Faculty & DAC
Employer Survey	S	S	S	S	S	S	S	S	S		S	Employer/Faculty & DAC

P = primary assessment tool, S = secondary assessment tool

Inputs Mapping - Required Courses

Course	Α	В	С	D	Ε	F	G	Н	ı	J	K	Title	Reviewed by:
CHBE 100	Р	Р					S			S	S	Intro. CHBE	Faculty
CHBE 120	Р										Р	CHBE Comp.	Faculty
CHBE 213	Р									S		Materials Science	Faculty
CHBE 215	Р				Р							Elem. Principles I	Faculty
CHBE 216	Р				Р			S		S	Р	Elem. Principles II	Faculty
CHBE 307	Р										S	Thermodynamics I	Faculty
CHBE 321	Р		S		Р							Fluid Mechanics Ops	Faculty
CHBE 322	Р		S		Р						Р	Heat Transfer Ops	Faculty
CHBE 323	Р		S		Р							Mass Transfer Ops	Faculty
CHBE 328	Р	S	Р		Р		S		S	S		Reaction Engineering	Faculty
CHBE 407	Р				Р						S	Thermodynamics II	Faculty
CHBE 411R	Р		Р			Р	Р	Р	Р	S	Р	Design I	Faculty
CHBE 412R	Р		Р			Р	Р	S	Р	S		Design II	Faculty
CHBE 424	Р		S		Р					S	Р	Transport Analysis	Faculty
CHBE 438	Р		S		Р					Р		Bioprocess Engineering	Faculty
CHBE 442	Р	Р			S		Р					CHBE Laboratory I	Faculty
CHBE 443	Р	Р			S		Р					CHBE Laboratory II	Faculty
CHBE 451	Р		Р		S						S	Proc. Dynamics & Cont.	Faculty
ENGR 310				Р								Intro to Eng. Design	Faculty

P = primary input, S = secondary input

Inputs Mapping - Electives and CORE 2.0 courses

Course	Α	В	С	D	Ε	F	G	Н	ı	J	K	Title	Reviewed by:
ENVE 444						Р		Р	S	Р		Haz. Waste Manage.	Faculty
CORE US							Р					University Seminar	
CORE W							Р					Writing	
CORE (12 credits)								Р				Diversity, IH, IS, IA	

P = primary input, S = secondary input

Student Examples for Direct Outcomes Assessment:

	Project/Activity	Outcome(s)	Scored by	Semester	DAC
				collected	Review
CHBE 411	Ethics case studies	F	Instructor and DAC	Fall 2008	2009
CHBE 411	Oral presentation	G	Faculty	Fall 2008	2009
CHBE 411	Interim design report	C, H	Advisor and DAC	Fall 2007	2008
				Spring 2008	2009
CHBE 412	Final design report	С	Advisor and DAC	Spring 2008	2009
CHBE 443	Unit Operations lab report	B, G	Instructor and DAC	Spring 2006	2006
CHBE 424	Transport modeling project	A, E	Instructor and DAC	Fall 2006	2007
Various	Computer-based projects	К	Faculty and DAC	Fall 2006	2008
				Spring 2007	
Various	Research Projects	I	DAC	Fall 2008	2009
				Spring 2009	
Various	Contemporary issues examples	H, J	DAC	Fall 2008	2009
				Spring 2009	
Со-Ор	Intern Performance Evaluation	D	DAC	2007 - 2009	2009

Computer-based Projects:

- CHBE 216 Design Case Study (Design Software)
- CHBE 323 Project using Design Software
- CHBE 322 Heat Transfer solution (Mathcad, Differential equations)
- CHBE 424 Transport Project (COMSOL)

Contemporary Issues Examples:

- CHBE 438 Bioproduct Report
- CHBE 411 or 412 Design Report
- CHBE 424 Global Climate Assignment

Research Projects

- CHBE 328 Kinetics Research Paper
- CHBE 438 Bioproduct Report
- CHBE 411 or 412 Design Report

Program Outcomes

- A An ability to apply knowledge of mathematics, science, and engineering.
- B An ability to design and conduct experiments, as well as to analyze and interpret data.
- C An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- D An ability to function on multi-disciplinary teams.
- E An ability to identify, formulate, and solve engineering problems.
- F An understanding of professional and ethical responsibility.
- G An ability to communicate effectively.
- H The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- I The recognition of the need for, and an ability to engage in life-long learning.
- J A knowledge of contemporary issues.
- K An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.